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Abstract 
 

Electrical currents and breakdown voltages as a 
diagnostic tool for fires 
 
Two types of electrical measurements have been investigated in order to perform 
diagnostics of the fire dynamics in the ISO 5660 cone calorimeter. The rationale of the 
study is to take advantage of the pilot ignition electrodes that are already in place and use 
these to collect additional information such as emission of pyrolysis gases and time to 
ignition.  
 
The first part of the project was a refinement of the method for measuring the so called 
ion current, which has already been investigated in a pilot study. It was found that 
thorough shielding and grounding gives an excellent signal to noise ratio. An expression 
for the correlation between measured current and conductivity was also developed and 
validated experimentally.  
 
The second part of the project consisted of measuring the breakdown voltage, that is the 
voltage when dielectric failure occurs. It was found that this method was more sensitive 
to the fire dynamics before ignition, such as pyrolysis, but that the response to ignition 
was more ambiguous for the breakdown voltage than for the ion current. 
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Notations 
  
Abbreviation Quantity   Unit  Explanation/comment 
 
A  prefactor in expression for  [m-1Pa-1] 
B  exponential factor in  [Vm-1Pa-1] 

expression for   
D  prefactor in expression for [Am-2K-2] 
  thermionic emission   
d  distance between electrodes [m] 
E  electric field   [Vm-1] 
HAB Height Above Burner  [m] 
HRR Heat Release Rate  [W] 
I current    [A] 
Ie,0 initial (no secondary  [A] 

ionization) electron current  
at cathode    

Ie total electrode current  [A] 
at cathode     

Iion,0 initial (no secondary  [A] 
ionization) ion current at  [A] 
cathode      

Iion, total ion current at cathode [A]  
J current density   [Am-2]   
kB Boltzmann’s constant  [JK-1]  kB = 1.38110-23 JK-1 

ne  electron density   [m-3] 
p  pressure   [Pa] 
PUR  polyurethane    
PMMA  poly(methyl methacrylate),    
R  resistance   [] 
S  surface area of electrode [m2] 
SPR Smoke Production Rate  [m2s-1] 
tignition  time to ignition   [s] 
T  temperature   [K] 
U  voltage    [V] 
Ubreakdown  voltage required to overcome [V]  
  the dielectric strength  
 
 
  Townsend’s coefficient   [m-1] 
  for ionization  
  effective secondary  [ ] 
  ionization coefficient  
  degree of ionization  [ ] 
  work function for thermionic [J] 
  emission from metal surface  
  resistivity   [m] 
  conductivity   [Sm-1] or [-1m-1] 
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Sammanfattning 
 
 
Denna rapport är en fortsättningen på en förstudie där möjligheterna studerades för att 
använda jonströmsmätningar som diagnostisk metod inom brandteknik, främst ISO 5660 
konkalorimetern. De positiva resultaten från förstudien ledde till detta 
fortsättningsprojekt. 
 
Projektet bestod av två delar: 
 

 förfinad metod att mäta jonströmmen 
 mätningar av överslagspänningen 

 
Den första delen gick ut på att mäta strömmen mellan elektroderna utan närvaro av gnista. 
Genom att skärma och jorda den utrustning som användes i förstudien åstadkoms en stor 
förbättring i signal/brus förhållandet. Trots detta var det fortfarande enbart möjligt att 
mäta själva antändningen. Detektion av pyrolysgaserna innan antändning var inte möjlig 
pga. alltför låga signalnivåer, även med relativt hög pålagd spänning (~1000 VDC). Ett 
uttryck för förhållandet mellan den uppmätta strömmen och konduktiviteten i 
elektrodgapet togs fram och validerades experimentellt. Kunskap om konduktiviteten är 
viktig om man vill gå vidare och göra uppskattningar om gasens tillstånd såsom 
temperatur, elektrontäthet och liknande. 
 
Det andra delen av projektet initierades av oförmågan att mäta på pyrolysgaser med hjälp 
av strömmätningar utan elektriskt överslag. Två elektriska kretsar designades och 
tillverkades: En för att skapa en välkontrollerad gnista och en för att mäta 
överslagsspänningen hos gnistan. Det visade sig att överslagsspänningen svarade väl på 
förändringar i gasen ovanför provkroppen även före antändning. Dessutom gav själva 
antändningen ytterligare en påverkan på urladdningsspänningen, dock inte lika tydlig som 
påverkan på strömmen i den första delen av projektet. 
 
Ett logiskt nästa steg är att även beakta fasförskjutningen mellan ström och spänning 
vilket rimligtvis ger en tydligare signal om förhållandet i elektrodgapet. 
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Summary 
 
This report is a follow up to a pilot study where the possibilities of using current 
measurement for fire diagnostics, primarily in the ISO 5660 cone calorimeter, was 
investigated. The positive results from the pilot study led to this project which consisted 
of two parts: 
 

 a refined method to measure the ion current 
 measurement of the breakdown voltage 

 
In the first part of the project the current between the electrodes was measured without a 
spark. This means that the electrodes could not be used as a spark igniter at the same 
time. By thoroughly shielding and grounding the equipment from the pilot study a major 
improvement was obtained in the signal to noise ratio. Despite this is was still not 
possible to measure pyrolysis gases since the signal was too weak, even with a relatively 
high applied voltage (~1000 VDC). An expression for the relationship between the 
measured current and the conductivity in the electrode gap was developed and validated 
experimentally. Knowledge about the conductivity is important in estimations of gas 
properties such as temperature, electron density, etc. 
 
The second part of the project was initiated from the inability to measure pyrolysis gases 
from current measurements without electric breakdown. Two circuits were designed and 
constructed: One for producing well defined high voltage pulses and one for measuring 
the breakdown voltage. It was found that the breakdown voltage responded clearly to 
changes in the gas composition above the tested sample even before ignition. When 
ignition occurred an additional change in the breakdown voltage could be observed, 
although not as distinct as the current pulses measured in the first part of the project. 
 
A logical next step would be to also measure the phase difference between current and 
voltage. This is expected to give a signal which more clearly characterizes the status of 
the gas/plasma in the electrode gap. 
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1 Introduction 
 
This project is a follow up to a pilot study regarding the use of ion current measurements 
as a tool for ignition detection in the ISO 5660 cone calorimeter [1, 2]. In the pilot study 
it was found that ignition could easily be detected by applying a DC voltage of 200 V 
over the pilot ignition electrodes in the cone calorimeter [3] and measuring the ion current 
in the ~3 mm air gap between the electrodes. It was found that the ion current was 
vanishingly small before ignition and that ignition could easily be detected since one or 
several current pulses occurred when the tested sample ignited. The pulse height was 
typically on the order 1-10 A and its length was on the order of some 10 ms. One 
drawback of this method was that it was not sensitive enough to detect for example the 
onset of pyrolysis. Another drawback was the fact that the electrodes of the cone 
calorimeter become assigned for the ion current measurements, using a DC voltage of 
200 V, and therefore they cannot be used to create the pilot ignition spark that is 
prescribed in the cone calorimeter standard [3]. 
 
Current measurements as a method to monitor flame behaviour is not a new concept in 
the combustion sciences. Ionic flame monitoring is the measurement of ion currents due 
to an applied voltage between two electrodes in a flame. This is commonly used as a 
safety mechanism in burners [4, 5]. The function is to close the gas supply to the burner if 
the ion current disappears, that is, if the flame is extinguished. The objective is to avoid 
the risk that a malfunctioning burner might fill up a space with a combustible or explosive 
gas mixture. More advanced versions of these so called flame rods have been presented 
where the ion current is characterized by its DC amplitude, AC amplitude, and flickering 
frequency. This gives more detailed information concerning the status of the flame and it 
has been proposed that these three parameters combined can give an early warning that a 
problem is developing in the combustor [6]. From a fire safety perspective conductivity 
of flames is also important in various other fields such as for example when assessing risk 
for electrical breakdown between power lines and earth during forest fires [7]. 
 
In recent years ion current sensors in internal combustion engines have gained 
considerable interest [8-10]. Measurement of the ion current over the gap of the spark 
plug is a cost effective alternative to more expensive pressure sensors used for on board 
engine diagnostics. In  a recent study the relationship between ion current and 
temperature was explored [11]. 
 
Conductivity of flames [12] and hot air [13] has been studied for over 100 years and is an 
area of on-going research. It is easy to understand the complexity of the subject given the 
fact that the chemistry of combustion, not including ions, is still far from well-known for 
most fuels and combustion conditions. Including the ion chemistry makes the feat even 
more difficult. Using electric fields to control the combustion has been proposed by 
several authors for different applications such as gas turbine control [14, 15] and for 
metallurgical processes [16] for example. In a recent study [17]  laser diagnostics were 
used to do fundamental research on the effect of electric fields on premixed methane-air 
flames. Direct numerical simulations [18] and experimental measurements [19] have been 
performed to study the ability of electric fields to stabilize flames. An exponential 
relation between applied DC voltage and the change in burning velocity of premixed 
methane/air flames has been reported  [20] while another study indicated a rather linear 
relationship between AC voltage and velocity in a propane flame [21]. The effect of 
electric field on soot was studied in reference [22] and one conclusion was that the 
majority of soot particles were positively charged. Microwaves were used to enhance 
flame stability in a methane-air stagnation flame in reference [23]. Finally flame 
flickering induced by magnetic fields was observed in reference [24]. 
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One rationale for exploring the possible use of the electrodes in the cone calorimeter for 
flame diagnostics is to obtain an objective and well defined method for detecting ignition 
[25, 26]. In the current standard procedure for the cone calorimeter [3] an operator 
visually determines when ignition occur. This will by necessity be a subjective measure. 
Especially for flame retarded materials the flame can be indistinct and unstable [27] and 
when smoke is obscuring the test object it can be very difficult to objectively determine 
when ignition occurs. According to the standard for the smoke chamber test method [28] 
it is required that the inspection window, used be the operator to observe the test, is 
closed when a certain smoke density is reached. This obviously makes it impossible to 
detect ignition visually after this point. Thus the detection of ignition can be a weak link 
in the study of the fire properties of a material. By introducing an automatic and objective 
ignition detection system more accurate information could be obtained. It is suggested 
that measurement of ion current or dielectric breakdown voltage could be the input signal 
for such a system. 
 
In this report two electrical phenomena were explored: 
 

 The ion current that flows between the electrodes under moderate voltages. This 
is a refinement of the previous pilot study [1, 2]. 
 

 The voltage that is required to overcome the dielectric strength of the medium 
between the electrodes. In other words, the voltage required to create an electric 
breakdown. 

 
Section 2 of this report contains the basic physical theory for the explored phenomena. 
The experimental materials and methods are described in Section 3 while the results are 
presented and discussed in Section 4.  The report ends with conclusions in Section 5 and a 
discussion on suggested future work in Section 6. 
 
Since this project was a direct continuation of the pilot study presented in reference [1] 
some parts in the present report are overlapping with the previous report. 
 
 

2 Theory 
 
An electric force is exerted on electrons and ions in an electric field. Due to these forces 
there will be a flux of charged particles, creating a current. If two metal plates separated 
by air are connected to a voltage difference on the order of 10 V no visible effect will 
occur [29]. However, with a very sensitive ampere meter a current on the order of 10-15 A 
would be detected. The source of this current is electrons and ions created by natural 
radioactivity and cosmic rays. If a flame zone passes through the electrode gap the current 
will increase considerably. Charged species have been studied in a methane-oxygen flame 
[30, 31]. The most important of these species  are electrons, CHO+, H3O

+, C2H3O
+, 

CH5O
+, O2

-, OH-, O-, CHO2
-, CHO3

-, and CO3
- [32]. Due to these electrons and ions, the 

current increases and for the electrode gap in the cone calorimeter typical currents on the 
order of 10-6 A have been observed with an applied voltage of 200 V [1, 2]. Section 2.1 
presents the most important parameters affecting this current. 
 
If the applied voltage is further increased the current between the electrodes will rise once 
a certain voltage is reached, Ubreakdown, and a discharge will be seen. This happens when 
the electrons gain sufficient energy, due to the electric field, between collisions with other 
species. At this point, when the kinetic energy of the electrons reaches the atomic 
ionization potential of the involved elements, each electron will knock out one additional 
electron upon collision. Immediately after the collision there will therefore be two slow 
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electrons that again will accelerate in the electric field and then knock out two more 
electrons, and so on. In other words there will be an electron avalanche and a self-
sustained electric discharge will remain as long as the high voltage is applied. The basic 
theory for Ubreakdown is given in Section 2.2. 
 
 

2.1 Current in electrode gaps without electric 
breakdown 

 
It has previously been shown [1, 2] that when the applied voltage is below Ubreakdown the 
current between the cone calorimeter electrodes follows Ohm’s law: 

ܫ ൌ
ܸ
ܴ

 

 

(1) 

 

For a homogeneous electric field in an area A with electrode distance d the resistance R is  

ܴ ൌ
݀
ܣߪ

 

 

(2) 

 

where  
 
 .is the conductivity in the gas between the electrodes [Sm-1] (or [-1m-1]) ߪ
 
The current is therefore 

ܫ ൌ
ܣߪܸ
݀

 

 

(3) 

 

The conductivity is due to charged particles, that is electrons, positive ions, and negative 
ions. Since electrons are much lighter than ions they are most easily accelerated by the 
electric field. Therefore it is the electron concentration the determines the conductivity, as 
long as the electron density is not much lower than ion concentrations. Negative ions 
affect the conductivity negatively since they are electron depleting [9].  
 
Experiments have shown that for air [29]:  

ߪ ൌ
9.6 ∙ 10ିଵ ∙ ݊


 

 

(4) 

 

where 
 
ne is the concentration of electrons [m-3], and 
p is the pressure [Pa]. 
 
Combining Equations (3) and (4) yields: 

ܫ ൌ
9.6 ∙ 10ିଵ ∙ ܸ݊ܣ

݀
 

 

(5) 
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This indicates that for a given air pressure it is the electron density that mostly influences 
the current. Simulations have shown that for a flat laminar lean methane-oxygen flame 
[32] the molar fractions of electrons, the degree of ionization , is on the order of 10-9. 
This information can be used in expression (5) by using the ideal gas law: 

݊ ൌ

݇ܶ

 

 

(6) 

 

which gives the electron density ne as: 

݊ ൌ ݊ ൌ
ߙ
݇ܶ

 

 

(7) 

 

Expression (5) transforms into: 

ܫ ൌ
9.6 ∙ 10ିଵ ∙ ܸܣ

݇ܶ݀
 

 

(8) 

 

Making the very bold assumption that  = 10-9 is valid in the flame zone between the 
electrodes in the cone calorimeter and that the flame temperature is 1300 K this can be 
evaluated numerically (see Section 4.1.3 on the geometry of the electrodes): 

ܫ ൌ
9.6 ∙ 10ିଵ ∙ 10ିଽ ∙ 200 ∙ ߨ ∙ 1.2 ∙ 10ିଷ ∙ 1.65 ∙ 10ିଷ

1.38 ∙ 10ିଶଷ ∙ 1300 ∙ 3 ∙ 10ିଷ
ൌ 22 μA 

 

(9) 

 

This is more or less in the same order of magnitude as the results of the measurements in 
the cone colorimeter, where the current was in the range 1 – 10 A [1, 2]. The current in 
expression (9) is not more than an indication since the degree of ionization may vary 
significantly between different flames [32, 33] and the contact area between flame and 
electrode may be smaller than the full area of the electrode [9, 34].   
 
Other parameters also affect the current, for instance the availability of electrons. If the 
electron emission from the negative electrode is dominated by thermionic emission the 
current density J on the surface is given by [9, 29] 

ܬ ൌ ଶ݁ܶܥ
ି

ఝ
ಳ் 

 

(10) 

 

Where 
 
C is a constant [Am-2K-2] 
  is the work function of the metal, that is the energy required to leave the metal 

surface [J] 
 
The work function in its turn depends on the external electric field [35]. Other parameters 
affecting the current is gas flow [36] and gas composition [29]. 
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2.2 Electric breakdown 
 
If electron losses, due to for example recombination and attachment to walls, are ignored 
the current to the anode will equal the current of emitted electrons from the cathode, I0. 
This is valid as long as the voltage over the electrode gap is low enough that no ionization 
due to collisions between accelerated electrons and molecules occur. If the voltage 
increases further ionization will subsequently start. This is characterized by Townsend’s 
coefficient for ionization,  [m-1]. 

 ൌ ି݁ܣ

ா  

 

(11) 

 

where 
 
A  is a constant [m-1Pa-1] 
B  is a constant [Vm-1Pa-1] 
E  is the electric field [Vm-1] 
 
 is the number of ionization events caused by one electron per unit length [29]. Due to 
the ionizations the current at the anode becomes: 

ܫ ൌ  ݁ఈௗܫ

 

(12) 

 

Obviously the total current will be the same at the cathode. The current at the cathode 
consists of the initial electron current I0 and an ion current which is 

ܫ ൌ ܫ െ ܫ ൌ ൫݁ఈௗܫ െ 1൯ 

 

(13) 

 

In other words each electron in the initial electron current generates ݁ఈௗ െ 1 ions in the 
electrode gap. For sufficiently high electric fields the positive ions hitting the cathode will 
knock out electrodes. The number of so called secondary electrons that each ion hitting 
the cathode knocks out is denoted . 
 
The total electron current Ie  from the cathode therefore becomes 

ܫ ൌ ܫ   ,ఊܫߛ

 

(14) 

 

Where I ion, means that it is the total ion current, that is 

ܫ ൌ ܫ  ,ఊܫߛ ൌ ܫ  ൫݁ఈௗܫߛ െ 1൯ 

 

(15) 

 

In expression (15) the ion current is calculated based on the total electron current Ie and 
not based on the initial electron current I0. This reason for this is obvious; when 
secondary emission is taking place I0 should be replaced by Ie in both expressions (12) 
and (13). The total electron current leaving the cathode becomes 
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ܫ ൌ
ܫ

1 െ ሺ݁ఈௗߛ െ 1ሻ
 

 

(16) 

 

Finally the total current at the anode becomes, taking into account the emitted electron 
current from the cathode and the ionization in the electrode gap: 

ܫ ൌ
݁ఈௗܫ

1 െ ሺ݁ఈௗߛ െ 1ሻ
 

 

(17) 

 

A transition from a non self-sustained current to a self-sustained current (that is an 
electric breakdown) occurs when the denominator becomes zero: 

1 ൌ ൫݁ఈௗߛ െ 1൯ 

 

(18) 

 

that is 

݀ߙ ൌ ݈݊ ൬
1
ߛ
 1൰ 

 

(19) 

 

Substituting (11) into (19), and using E=U/d  gives 

ି݁݀ܣ
ௗ
 ൌ ݈݊ ൬

1
ߛ
 1൰ 

 

(20) 

 

that is 
 

ܸ ൌ
݀ܤ

lnቌ ܣ

ln ቀ1ߛ  1ቁ
ቍ  lnሺ݀ሻ

 
 

(21) 

 

 
Expression (21) is known as Paschen’s law [37]. Whereas reasonably well defined 
experimental data of the gas phase properties A and B exist in the literature, information 
on  is very scattered since this is a quite complex parameter depending on, among many 
factors, the state of the cathode surface. Often values of   10-1 – 10-2 are assumed [29]. 
See Table 1for a list of tabulated data from the literature. 
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Table 1  Coefficients in different gases for Townsend’s coefficient for ionization (11) and for 
Paschen’s law (21). 

Gas A [m-1Pa-1] 
[29] 

B [Vm-1Pa-1] 
[29]

  [ ] 

N2 9 257  >1.3·10-6  [29] 
O2 7 206  10-7 - 4.5·10-2  [29] 
Air 11 274  8·10-6 - 1.5·10-4   

10-2  
[29] 
[38] 

H2 4 99  10-6 – 2.4·10-3  [29] 
H2O 10 218    
CO2 15 220    
 
As an example, the breakdown voltage for a 3 mm electrode gap (such as in the cone 
calorimeter) at atmospheric pressure (101 kPa) would become 
 

ܸ ൌ
274 ∙ 101 ∙ 10ଷ ∙ 3 ∙ 10ିଷ

lnቌ 11

ln ቀ 1
10ିଶ  1ቁ

ቍ  lnሺ101 ∙ 10ଷ ∙ 3 ∙ 10ିଷሻ

ൌ 13 kV 
 

(22) 

 

 
The can be compared with typical values for the dielectric strength of air which is         
3.2 kVmm-1 at atmospheric pressure [29]. 
 
Strictly speaking the breakdown voltage in expression (21) is rather dependent on the 
molecule concentration than on pressure. This means that if the pressure is constant and 
temperature increases the breakdown voltage will decrease. 
 
Furthermore, in a flame environment the gas properties obviously differs from the 
properties of air. For example electrons and ions much more abundant in flame zones 
than in air. In one study [22] it was found that the flame reduced the dielectric field 
strength to one seventh that of air. In other words the breakdown voltage is expected to 
drop when ignition occurs. 
 
The theory for breakdown voltage described here is valid for moderate products of 
pressure and gap distance, pd < 300 Pa·m [29]. Since the experiments in this study has 
been performed at atmospheric pressure and with a gap distance of 3 mm this is really at 
the limit of the applicability of the theory. For high products of pd the breakdown is better 
described by the faster processes of spark discharges (streamers) [29, 39]. However, the 
theory above is only used for a qualitative interpretation of the experimental results so the 
physics of streamers will not be described. 
 
 

3 Experimental methods 
 
 

3.1 Electrical measurements 
 
The majority of tests were performed with the type of electrode assembly originally used 
in the cone calorimeter. Figure 1 shows such an electrode, supplied by Fire Testing 
Technology Limited, East Grinstead, UK. 
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Figure 6.  Schematic of the electronics used to create the high voltage to the electrodes. T2 is an 

IRF740, D3 and D4 are a 1N4005, C3 has a value of 8.2 nF. The inductance of the 
primary and secondary windings of X1 are 9.9 mH and 44 mH, respectively.   

 
 
Table 2  Component list for the electronics used to create the high voltage pulse to the electrodes. 

See Figure 6. 

Symbol Value/Type 
R1 & R2 250 Ω 
R3 & R8 10 kΩ 
R4 1-10 kΩ 
R5 & R6 100 Ω 
R7 10 Ω 
C1 4700 µF 
C2 1 µF 
C3 8.2 nF 
T1 BC337NPN 
T2 IRF740 
D1 L-7104GD 
D2 L-7104YD 
D3 & D4 1N4005 
X1 B 0221119027 
 
 
The potential across the electrodes was measured using a resistive voltage divider and 
commercial Tektronix P6015A. The resistive voltage divider consisted of two resistors, 
one of 1GΩ and other of 1MΩ which were connected in series across the electrodes. The 
latter resistor and the oscilloscope (1 MΩ) were connected in parallel. A schematic of the 
voltage divider is shown in Figure 7. 
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4.1.2 Measurements on pyrolysis gases 
 
Despite several attempts it was not possible to measure a current due to pyrolysis gases. 
The applied voltage was increased to 1000 VDC and the large electrodes in Figure 5 were 
tested but no signal above the noise level could be detected. A plausible explanation is 
that the increase in electron density, or ion density, is simply not large enough to give a 
measurable change in the conductivity of the pyrolysis gases. 
 
For this reason another approach was investigated in order to measure pyrolysis gases, i.e. 
measurement of the breakdown voltage. As will be seen below this method can be used 
both for measuring the onset of pyrolysis as well as for detecting ignition. 
 
 

4.1.3 Ion current vs. conductivity 
 
When measurements are performed the result is a current. This is not a direct property of 
the gas between the electrodes. Rather, in order to characterize the gas in the gap the 
conductivity is the physical property of choice. Therefore the relation between current 
and conductivity is investigated here. 
 
The resistivity is given by 

ߩ ൌ ܴ
ܣ
݀

 

 

(23) 

 

Where 
 
R is the resistance [] 
A the cross sectional area of the electrode gap [m2], and 
d the separation between the electrodes [m] 
 
and the conductivity is simply the inverse of the resistivity 

ߪ ൌ
݀
ܴܣ

 

 

(24) 

 

The geometrical details of the electrode pair are given in the upper part of  Figure 22. The 
distanced between the electrode surfaces is 3 mm and the two radii required to calculated 
the exposed electrode area in the gap are r1 = 2.4/2=1.2 mm and r2=3.3/2=1.65 mm. The 
area is, therefore 

ܣ ൌ  ଶݎଵݎߨ

 

(25) 
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4.2.3 Attempt to measure smouldering fires 
 
Finally an attempt was made to measure a change in the breakdown voltage when the 
electrodes were positioned above a smouldering cigarette in an upholstered furniture 
mock-up, see Section 3.2.3. No significant change in Ubreakdown could be measured.  
 
There is one major difference between the measurement of smouldering fire, Figure 15, 
and the measurements in the propane flame and the cone calorimeter, Figure 10 and 
Figure 8 respectively. The temperature is very high in the flames of the propane burner 
and the cone calorimeter. Even for the cone calorimeter before ignition the temperature is 
high and increasing. By contrast, the temperature above the smouldering fire  is quite 
constant and not significantly higher than the ambient room temperature. This means that 
the change in Ubreakdown due to changed air density does not come into play for the 
smouldering fire in the same way as it does for the propane burner and the cone 
calorimeter. On the other hand the results show that increased temperature, due to 
removed radiation shield, is not the supreme parameter affecting Ubreakdown. For example, 
in Figure 30, Ubreakdown does not start to decrease significantly at 20 s when the radiation 
shield is removed, but rather at ~75 s when the pyrolysis gases, as measured by the SPR, 
start to appear. This is in contrast to the results in Figure 29 where the decrease in 
Ubreakdown starts immediately at the time of shield removal, but where also the SPR starts 
to increase at the time of shield removal. Furthermore the correlation between 
temperature (or density) and Ubreakdown is not trivial, as discussed at the end of Section 
4.2.2.1.1. 
 
Although measurement of smouldering fires did not succeed in this project this does not 
mean that there is no hope for using the electrodes for this purpose. There are many 
possible refinements possible for the method as will be discussed below. 
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5 Conclusions 
 
It has been shown that the signal to noise ratio of DC current measurements can be 
greatly improved by careful shielding and grounding of the measurement equipment. This 
enables more sensitive detection of the ignition phase. It was also shown that the current 
can straightforwardly be translated into electric conductivity which is a property that 
better lends itself to a description of  the status of the gas between the electrodes.  
 
It was not possible to detect a current above the noise level for the pyrolysis phase, 
neither by increasing the applied voltage to 1000 VDC nor by increasing the size of the 
electrodes. The explanation for this is probably that the concentration of electrons and 
ions is much lower for the pyrolysis gases than for the flame front. In order to measure 
pyrolysis gases with the electrodes another property was investigated, the breakdown 
voltage, Ubreakdown. 
 
The breakdown voltage correlated with HRR and SPR before and at ignition. After 
ignition the correlation was poor. This shows that, given the simple equipment used in 
this report, is possible to use the pilot ignition electrodes to detect pyrolysis gases and 
ignition. Indeed, this is possible to do at the same time as the electrodes perform the 
additional role of pilot ignition. In other words, it is possible to perform measurements of 
Ubreakdown without compromising with the ISO 5660 standard. In fact, according to the 
standard the spark igniter should be removed after ignition. In other words the low 
correlation after ignition is of no relevance if the standard is followed. The drop in 
Ubreakdown is not as distinct as the current pulses that appear using the DC measurements. 
However, this was only a first test of measuring Ubreakdown and there is clearly a potential 
for improvement of the methodology. 
 

 
6 Future Work 
 
Further research should aim at improving the response of the methods to weakly ionized 
gases such as pyrolysis gases and especially smoke from smouldering fire. The latter has 
not yet been measurable be any of the two methods tested.  
 
The voltage divider probe did not give the same result as the commercial voltage probe. 
This is probably due to the relative high inductance of the voltage divider. The inductance 
will affect the probes accuracy when measuring dynamic processes. The performance of 
the voltage divider could be improved by either adding a compensating network or 
changing the resistors. An improved probe should be calibrated against known high 
voltage pulses and not against a commercial probe since the latter can give incorrect 
results for the type of demanding measurements performed in this study (high voltage, 
fast processes, EMC problems…). 
 
One proposal for improving the response of the system is to study the time lag between 
the applied voltage and resulting current. This can be done quite straightforwardly with 
the method of electric breakdown as has been described in this report but an improved 
voltage probe and an appropriate current probe are required. For the DC measurements 
(without electric breakdown) it is clearly not possible to measure a time lag since the 
voltage is constant. Therefore a signal generator producing AC voltages would be 
required. When the atmosphere between the electrodes changes there will be a change in 
the capacitance, and therefore also a change in the the time lag. Measuring the change in 
time lag (capacitance) instead of the current (conductivity) can also be described as 
measuring electric dipoles instead of electric monopoles (free charges). The change in 



55 

 

abundance of dipoles can be expected to vary more than the change of free charges since 
the latter require ionization or emission of electrons from the cathode. Changes in dipole 
concentration can occur more easily due to non-ionized chemistry in the pyrolysis of the 
fuel, in the flames, or in the smoke gases. 
 
Electric flame diagnostics is not limited to the cone calorimeter. One interesting project 
would be to conduct a similar study to the one presented here but applied to the smoke 
box method [28] where under-ventilated combustion is studied. 
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